الرئيسية
الدورات التدريبية
تواصل معنا
الرئيسية
الدورات التدريبية
تواصل معنا
تواصل معنا
منهاج
24 Sections
64 Lessons
10 Weeks
Expand all sections
Collapse all sections
Intro
4
1.1
What is the meaning of Machine Learning
1.2
How can i get Dataset Part 1
1.3
How can i get Dataset Part 2
1.4
How can i get Dataset Part 3
Master Data Preprocessing
7
2.1
ما قبل بناء اي موديل بنقسم البيانات ازاي ؟
2.2
Data Preprocessing Part 1
2.3
Data Preprocessing Part 2
2.4
Data Preprocessing Part 3 – Normalization and Standardization
2.5
Feature Scalling with code
2.6
Data Cleaning
2.7
Data Cleaning With Code
Simple linear Regression
7
3.1
Simple Linear Regression
3.2
Simple Linear Regression with code
3.3
OLS (Ordinary Least Squares)
3.4
How to evaluate Performace of regression Model – Cost Function
3.5
How to evaluate Performace of regression Model – Cost Function Part 2
3.6
Gradiant Decent Part 1
3.7
Gradiant Decent Part 2
Multiple linear regression
3
4.1
Multiple Linear Regression
4.2
Multiple linear regression with code part 1
4.3
Multiple linear regression with code part 2
Polynomial regression
2
5.1
Polynomial regression
5.2
Polynomial regression With code
Overfitting & Underfitting
1
6.1
Overfitting & Underfitting
Regularization
1
7.1
(L2) Regularization – Lasso (L1) & Ridge
Cross-Validations
2
8.1
Types of Cross-Validations
8.2
Types of Cross-Validations With Code
Top Evaluation Metrics for Regression Problems in Machine Learning
1
9.1
Evaluation Metrics for Regression Problems
Decision Tree in regression
1
10.1
Decision Tree in Regression
Ensemble Models
1
11.1
Bagging
Random Foreset in Regression
1
12.1
Random Foreset in Regression
Ensemble Models
3
13.1
Boosting
13.2
AdaBoost
13.3
Gradient Boosting Machine (GBM)
Black Friday Project
6
14.1
Part 1
14.2
Part 2
14.3
Part 3
14.4
Part 4
14.5
Decision Tree
14.6
Random Forest
Classification Modules
6
15.1
Intro to Classification Models
15.2
Decision Tree (For Classification)
15.3
Random Forest Algorithm (For Classification)
15.4
Logistic Regression
15.5
Naive Bayes
15.6
k-Neares-Neighbor
Support Vector Machine in Classification
5
16.1
SVM intro
16.2
Hard Margin
16.3
Soft Margin
16.4
Kernel Trick
16.5
SVM with Code
Top Evaluation Metrics for Classification Problems in Machine Learning
1
17.1
Evaluation Metrics for Classification Problems
Balancing Data
2
18.1
Different Methods for Balancing Data in Classification Problems
18.2
ADASYN with Code
K-Means Cluster
3
19.1
K-Means Cluster
19.2
K-Means Cluster Part 2
19.3
K-Means Cluster Part 3 With Code
Hierarchical Clustering
1
20.1
Hierarchical Clustering
DBSCAN
1
21.1
DBSCAN
Principal Component Analysis (PCA)
2
22.1
Principal Component Analysis (PCA)
22.2
Principal Component Analysis (PCA) With Code
Feature Selection
1
23.1
Feature Selection Methods
Time Series
2
24.1
Time Series
24.2
Time Series With Code
This content is protected, please
login
and
enroll
in the course to view this content!
Login with your site account
Lost your password?
Remember Me
Not a member yet?
Register now
Register a new account
Are you a member?
Login now
Modal title
Main Content